Medios de union y apoyos - Reacciones
Para garantizar el equilibrio, y además que éste sea estable, de cualquier elemento de una estructura o máquina, y de la estructura o máquina misma en su conjunto, es preciso establecer vínculos eficaces entre los diversos elementos y entre éstos y el suelo. Ello se consigue mediante los medios de unión y los aparatos de apoyo, que podemos definir como dispositivos materiales que reducen total o parcialmente la libre movilidad de un elemento.
Las uniones y apoyos se caracterizan por el número de coacciones que imponen, es decir, por el número de movimientos o grados de libertad que impiden y anulan. Pueden clasificarse en completos e incompletos, según que imposibiliten o no todos los movimientos posibles.
Puesto que cada coacción la impone el apoyo ejerciendo la fuerza que impide el movimiento correspondiente, es evidente que la reacción total del apoyo sobre el elemento estará constituida por el conjunto de todas las fuerzas correspondientes a cada una de las coacciones.
A continuación establecemos una clasificación de los diferentes tipos de apoyos que se pueden dar en elementos planos solicitados por cargas contenidas en su mismo plano.
1) Apoyo simple o apoyo móvil
En la figura siguiente se representan varios tipos de apoyo simple, cuya característica es la de impedir únicamente el desplazamiento en una determinada dirección, permitiendo el desplazamiento en la dirección perpendicular y la rotación.
El esquema que se utiliza para la representación del apoyo simple es el siguiente:
Este tipo de apoyo permite el equilibrio únicamente cuando las cargas actúan perpendicularmente a la superior de apoyo, y puesto que impone una única coacción de reacción de este apoyo está constituida por una tuerza en la dirección del desplazamiento restringido.
2) Articulación
Este tipo de apoyo, denominado también apoyo fijo o apoyo de rótula, impide cualquier tipo de desplazamiento, dejando libre la rotación. La reacción correspondiente puede descomponerse en dos direcciones perpendiculares Rx y Ry.
La representación esquemática de este tipo de apoyo es la siguiente:
3) Empotramiento
Su finalidad es asegurar la completa inmovilidad del extremo de la pieza, impidiendo en consecuencia todo posible desplazamiento y rotación. La reacción en este caso se compone de una tuerza R, de componentes Rx y Ry y de un momento M de eje perpendicular al plano XY.
El esquema representativo es el siguiente:
La determinación de las reacciones en los apoyos de una pieza se efectúa por los métodos generales de la estática. Dado que el sistema de tuerzas por las cargas aplicadas y las reacciones originadas en los apoyos, debe constituir una sistema en equilibrio, basta aplicar las condiciones de equilibrio estático, que para un sistema plano son:
Para que el anterior sistema de ecuaciones admita un solución única es preciso que el número de incógnitas (componentes de las reacciones de los apoyos) sea igual a tres, diciéndose entonces que el sistema es estáticamente determinado o isostático. Tal es el caso de la pieza de la figura siguiente:
En caso de que el número de ecuaciones sea superior al número de incógnitas el sistema es incompleto y constituye un mecanismo. En la figura siguiente se observa que ningún apoyo es capaz de absorber la componente horizontal de la carga P, y en consecuencia la pieza se desplazará lateralmente.
Si por el contrario, el número de incógnitas es superior a tres, el sistema se denomina estáticamente indeterminado o hiperestático, siendo preciso establecer ecuaciones adicionales basadas en la deformación de la pieza que nos permitan igualar el número de ecuaciones al de incógnitas. A exceso de incógnitas respecto al número de ecuaciones se le denomina grado de hiperestaticidad. La pieza de la figura siguiente constituye un sistema hiperestático de segundo grado.